
On the Need for a New Generation of Code
Review Tools

Tobias BaumB and Kurt Schneider

FG Software Engineering
Leibniz Universität Hannover

Hannover, Germany
{firstname.lastname}@inf.uni-hannover.de

Abstract. Tool support for change-based code review is gaining wide-
spread acceptance in the industry. This indicates that the current gen-
eration of tools is well-aligned to current code review practices. Never-
theless, we believe that further improvements in code review tooling can
lead to increased review efficiency and effectiveness. In this paper, we
combine results from a qualitative study and results from the literature
to substantiate this claim. We derive promising improvement areas and
provide an overview of existing research in these areas. A common at-
tribute of these improvements is that they trade flexibility for reviewer
support. As flexibility is one of the main characteristics of the current
generation of code review tools in Hedberg’s classification of review tool
generations, we regard these coming tools as part of a new generation of
code review tools.

Keywords: Code Reviews · Code Inspections and Walkthroughs · Tool Support

1 Introduction

Code review is a well-established method of software quality assurance. In recent
years, change-based review has become the dominant style of code review in in-
dustry [5] [24]. Its main characteristics are the use of code changes performed in
a unit of work, e.g. a user story, to determine the scope of the review, and the
replacement of management intervention through conventions or rules for many
decisions [5]. Change-based review is supported by tools, in some cases special-
ized code review tools, in other cases general-purpose tools like “diff”. Looking
at their widespread adoption, these tools seem to address the current needs of
the industry. Nevertheless, we believe there is still room for improvement, not
least because these tools do not fully incorporate existing research results. The
purpose of this article is to derive and collect promising ideas to improve code
review effectiveness and efficiency through code review tools in the context of in-
dustrial software development. This is done from the point of view of researchers
developing these tools and based on results published in the literature and on
interviews with software development professionals. This article can be used to
guide and direct future research as well as tool development efforts.



2 Methodology

The style of this article is largely deductive. We extract well-founded hypotheses
from existing research and combine them to derive and evaluate improvement
opportunities for industrial code review. While there are notable differences be-
tween classic Fagan Inspection and modern change-based code review, many
important aspects are similar [5] [24]. We therefore also include results from
research on classic inspections as evidence, as long as we believe them to be
applicable. Further experiments could be conducted to ascertain these assump-
tions. A limitation of this part of our analysis is that we did not perform a
systematic literature review (SLR) in the narrow sense of the term. An SLR
could have further reduced the risk to miss relevant publications.

We recently performed a study based on semi-structured interviews with 24
software professionals from 19 companies [5,6]. To some extent, these interviews
concerned the way in which reviewers work and which problems they perceive.
These interviews form the second pillar of our argumentation, in addition to the
literature. All interviews were recorded and later transcribed. Most interviews
were conducted by the first author. Some interviews were performed by another
researcher to reduce the risk of bias. Our sample has a focus on small and medium
standard software development companies and in-house IT departments from
Germany, but we included contrasting cases for all main factors. The interviewees
are mostly software developers and team or project leads, as the development
teams were responsible for code reviews in the sampled cases. The interviews
were conducted between September 2014 and May 2015. Further methodological
details on the interviews can be found in our related articles [5, 6]. The main
study [6] followed “Grounded Theory” methodology, but the results presented
in the current article are not a grounded theory. We cite many statements from
the interviews as examples for certain points. The subscripts at these citations
denote the interviewee ID from [6].

To assess the current state of code review tools, we combined information
from our interviews and from the websites of the respective tools. To a limited
degree, we also executed and tried some of the tools.

3 What do we Know about Code Reviews?

A lot of research has been done on code reviews and inspections, and still many
questions could not be answered conclusively. But some results are relatively
well supported and a subset of these will form the foundation of our discussion:

The first such result concerns which factors have a major and which only a
minor influence on the effectiveness and efficiency of reviews. When analyzing
experimental data, Porter et al. “found that [reviewers, authors, and code units]
were responsible for much more variation in defect detection than was process
structure”, and they “conclude that better defect detection techniques, not bet-
ter process structures, are the key to improving inspection effectiveness.” [21]
A similar conclusion is reached by Sauer et al., who identify “individuals’ task



expertise as the primary driver of review performance” based on theoretical con-
siderations. Correlations between the (inspection) expertise of the reviewer and
the number of found defects have also been reported by Rigby [23] and by Biffl
and Halling [8], just to name a few. We conclude that the major factors influ-
encing code review effectiveness and efficiency are the reviewer, its relation to
the artifact under review and the way in which it performs the checking.

The second important result is about the role of understanding the artifact
under review. In their study based on interviews with developers at Microsoft,
Bacchelli and Bird found that “[m]any interviewees eventually acknowledged
that understanding is their main challenge when doing code reviews” [2], which
confirmed earlier results from Tao et al. [26]. Further support for a positive
correlation between code understanding and review effectiveness comes from
experiments by Dunsmore, Roper and Wood [12]. Our interview results fully
support these findings, e.g.: “I have to understand what the other developer
thought at that time. And for that you look very closely at the code, and then
things that should or could be done better somehow come up automatically”3 .

4 The Problem of Large Changes

In our interviews, we asked about problems hampering review effectiveness. One
of the most common themes was the difficulty to understand and review large
changesets: “Smaller commits are generally not a problem. But these monster
commits are always . . . not liked very much by the reviewers.”5 “What sometimes
impedes me is when the ticket is just too big.”7 “When you have such a big pile
to review the motivation is not very high and you probably don’t approach the
review with the needed quality in mind.”12

The conclusion that large changesets are problematic can also be derived from
other research results: There is evidence that the review effectiveness greatly de-
creases when the review rate (checked lines of code/time for checking) is outside
the optimal interval (see e.g. [15]). There is also evidence that concentration and
therefore review effectiveness fades after some time of reviewing [19] [22]. Com-
bining these values leads to an upper limit on the maximal size of an artifact
that can be reviewed effectively in a single session.

Given the problems with the review of large changes, many teams resort to
the frequent review of small changes [23]. Up to a certain point, this is a good
thing to do, but there are also arguments in favor of larger changes and reviews:
The change under review should be self-contained, it should fulfill certain quality
criteria before central check-in (at least to be compilable) and reviewing very
small changes can lead to high overhead and duplicate work [26]. So instead of
forcing every change to be very small, we argue to make the review of larger
changes more effective and let changes stay at their “smallest natural size”.



5 Tool Support to the Rescue

We substantiated in the previous sections that to increase the effectiveness and
efficiency of code reviews for defect detection, we should focus on the reviewer
and how to help her/him understand large code changes better. We believe
that improved tool support provides a lot of opportunities in this regard, and
will give examples in the following subsections. Additionally, an overview of
our argumentation is shown in Fig. 1. The subsections correspond to the most
important influencing factors, deduced from the results mentioned so far:

– Choose the best reviewer for the job (Sect. 5.1)

– Shrink the size of the changeset that has to be reviewed (Sect. 5.2)

– Help the reviewer to understand large changesets (Sect. 5.3)

– Decrease the need to understand the change (Sect. 5.4)

-HCodeHreviewHeffectivenessHandH
efficiencyHdependHmainlyHonHthe
workHofHtheHreviewerHandHitsHfit
toHtheHartifactHunderHreview.
-HUnderstandingHtheHreviewHartifact
isHtheHmostHimportantHaspectHofH
reviewingHcode.

-HTheHreviewHofHlargeHchangesHisH
theHmostHsignificantHchallengeHin
change-basedHcodeHreview.

-HChange-basedHcodeHreviewHisHthe
dominatingHstyleHofHcodeHreview
inHpractice.

ChooseHtheHbestHreviewerHfor
theHjob

Existing findings General improvement options Possible tool features

AvoidHlargeHchangesets

ShrinkHtheHchangesetHtoHbe
reviewed

HelpHtheHreviewerHtoHunder-
standHlargeHchanges

DecreaseHtheHneedHtoHunder-
standHtheHchange

ReviewerHrecommendation

RefactoringHdetection

IDE-likeHnavigationHsupport

GuidingHtheHreviewer

=IntegrationHofHstaticHanalysis>

=>

SemanticHDiffs

Summarizing/VisualizingHthe
change

IdentificationHofHlowHrisk
changeHfragments

Fig. 1. Overview of argumentation and tool features

5.1 Reviewer Recommendation

In recent years, there have been a number of studies on “reviewer recommenda-
tion”, i.e. on finding the best reviewer(s) for a given change (e.g. [3] [29]). While
this promises a large effect in theory, there are several problems reducing the
benefit, especially in smaller teams. The most obvious is that in a small team, it
is often fairly easy to see who is a good reviewer for a change, so that computer
support does not provide large gains. In some other cases, the reviewer for a cer-
tain module is fixed [5], so there is no choice at all. Additionally, always choosing
the best reviewer can lead to a high review load for experienced developers, and
a high workload has a negative impact on review quality [7]. Therefore reviewer
recommendation has to move from determining local optima for every single
review to a more global optimization of reviewer assignment.



5.2 Reducing Changeset Size

Given large changesets with singular changes of varying relevance for the review
goals, reviewers try to manually pick the relevant subset. This is seen as hard and
error-prone: “After some time you get a feeling which files are relevant and which
are not, but it’s hard to filter them out. And when I don’t look at them there
might be some change in there that was relevant, anyway. That’s problematic.”8

An important special case is systematic changes, especially rename and move
refactorings. This special case has been studied for example by Thangthumachit,
Hayashi and Saeki [28] and Ge [14]. For the more general case, Kawrykow and
Robillard [18] developed a method to identify “non-essential” differences. Zhang
et al. [30] describe the tool “Critics” to help in inspecting systematic changes
using generic templates. Tao and Kim [27] propose an approach to partition
composite code changes. Further research could provide a better foundation to
decide which changes are low-risk, and it could look into the distinction between
change fragments that are error-prone and need to be checked in detail and
change fragments that only need to be read to help understanding. Another
research avenue is to include more data, such as test coverage information, to
assess review relevance. Nevertheless, much could already be gained by bringing
the promising existing results into wider use.

5.3 Support for Understanding the Change

A theme that occurred throughout our interviews is that large changes are best
reviewed with the search and hyperlinking support of an IDE (e.g. “I think
reviewing code purely in ’Crucible’ only works for trivialities. Because naturally
many features are missing that you have in an IDE.”2 ). This improvement has
already made its way into some widely used review tools, either by making IDE-
like support available in a browser (e.g. “Upsource”1) or by making the review
tool available as an IDE plugin (e.g. “AgileReview”2 or “EGerrit”3).

Many of our interviewees try to get a high-level understanding of the change
at the start of the review (“at first an overview because otherwise the prob-
lem is that you loose sight of the interrelation of the changes”10 ). The current
support for this activity is very limited, consisting mainly of the overview of
the commit messages of the singular commits belonging to the change. There is
relatively little research on visualizing and summarizing code changes for better
understanding: McNair, German and Weber-Jahnke propose an approach to vi-
sualize change-sets [20], as do Gomez, Ducasse and D’Hondt [16]. In addition,
several textual summarization techniques have been proposed (e.g. [9]). A re-
lated technique that can help to summarize the contents of a change is “change
untangling” [4] [11] [27]. We believe that more research on these topics is needed
to make change visualization effectively usable by reviewers.

1 https://www.jetbrains.com/upsource/
2 http://www.agilereview.org
3 https://www.eclipse.org/egerrit/



After having an overview of the changes, the reviewer needs to step through
the change’s details in some order. Many reviewers try to find an order that helps
their understanding, but often fall back to the order presented by their review
tool: “The problem is you sometimes get lost and don’t find a good starting
point.”10 “If you don’t have that, you just step through the files in the commit
one after another . . . ”10 . A similar finding resulted from a study by Dunsmore,
Roper and Wood where participants suggested “ordering of code” to improve
inspections [13]. Guiding the reviewer as proposed here shares some similarities
with the reading techniques studied intensively for inspections [1] [10]. The main
difference is that these reading techniques try to change the way the reviewer
works, while the proposed guiding moves some cognitive load from the human
reviewer to the tool. In addition, most reading techniques proposed so far are
not intended to be used with changesets, so that research opportunities abound
in this area.

5.4 Decrease the Need for Code Understanding

From a theoretical point of view, reducing the need to understand the code is
another possibility to solve the stated problem. Essentially this is a question of
efficiency: Is in-depth code review the most efficient way to find a certain defect
type or are there more efficient ways, e.g. static code analysis or testing? [15] [25]
As long as there are practically relevant defect types for which in-depth code
review is most efficient, understanding the code will still be needed. And when
there will be no such defect types anymore, for example after a breakthrough in
static analysis research, code review in its current form will not be needed any
longer for defect detection. Therefore, we won’t discuss this topic further in this
article.

6 A New Generation of Code Review Tools

About a decade ago, Henrik Hedberg proposed a classification of software in-
spection/review tools into generations [17]. He concluded that the coming fifth
generation should provide flexibility with regard to the supported documents
and processes and that they should comprehensively include existing research
results. This prediction has come true (with limitations): Current review tools
like “Gerrit”4, “Crucible”5 or “Collaborator”6 are flexible and commonly sup-
port the review of any kind of text file. In the preceding sections, we derived
opportunities to reach a higher level of review effectiveness. For most of them,
a reification from the review of changes in text files to the review of changes in
source code has to take place. Flexibility is traded for better reviewer support
to some degree. This leads us to expect the rise of the sixth generation of code
review tools, the generation of “cognitive support review tools”.

4 https://www.gerritcodereview.com
5 https://www.atlassian.com/software/crucible
6 https://smartbear.com/product/collaborator/



7 Summary

We collected four findings on code review we regard as well established: (1) Code
review effectiveness and efficiency depend to a large degree on the reviewer, its
style of work and its fit to the artifact under review. (2) Understanding the
review artifact is the most important aspect of reviewing code. (3) Review in
industry is commonly done change-based. (4) The review of large changes is
the most significant challenge in code review. Based on these assumptions we
derived leverage points to improve review effectiveness and efficiency through
tool support. For each of these points, we surveyed existing research and state
open research questions. In our own work, we currently look into some of these
research questions. We believe there is an abundance of open questions for other
researchers to join us in our efforts to lay the foundation for the generation of
“cognitive support review tools”.

References

1. A. Aurum, H. Petersson, and C. Wohlin. State-of-the-art: software inspections
after 25 years. Software Testing, Verification and Reliability, 12(3):133–154, 2002.

2. A. Bacchelli and C. Bird. Expectations, outcomes, and challenges of modern code
review. In Proceedings of the 2013 International Conference on Software Engineer-
ing, pages 712–721. IEEE Press, 2013.

3. V. Balachandran. Reducing human effort and improving quality in peer code re-
views using automatic static analysis and reviewer recommendation. In Proceedings
of the 2013 International Conference on Software Engineering. IEEE Press, 2013.

4. M. Barnett, C. Bird, J. Brunet, and S. K. Lahiri. Helping developers help them-
selves: Automatic decomposition of code review changesets. In Proceedings of the
2015 International Conference on Software Engineering. IEEE Press, 2015.

5. T. Baum, O. Liskin, K. Niklas, and K. Schneider. A faceted classification scheme
for change-based industrial code review processes. In Software Quality, Reliability
and Security (QRS), 2016 IEEE International Conference on. IEEE, 2016.

6. T. Baum, O. Liskin, K. Niklas, and K. Schneider. Factors influencing code review
processes in industry. In Proceedings of the ACM SIGSOFT 24th International
Symposium on the Foundations of Software Engineering. ACM, 2016.

7. O. Baysal, O. Kononenko, R. Holmes, and M. W. Godfrey. Investigating technical
and non-technical factors influencing modern code review. Empirical Software
Engineering, pages 1–28, 2015.

8. S. Biffl and M. Halling. Investigating the influence of inspector capability factors
with four inspection techniques on inspection performance. In Software Metrics,
2002. Proceedings. Eighth IEEE Symposium on, pages 107–117. IEEE, 2002.

9. R. P. Buse and W. R. Weimer. Automatically documenting program changes.
In Proceedings of the IEEE/ACM international conference on Automated software
engineering, pages 33–42. ACM, 2010.

10. C. Denger, M. Ciolkowski, and F. Lanubile. Investigating the active guidance factor
in reading techniques for defect detection. In Empirical Software Engineering,
2004. Proceedings. International Symposium on, pages 219–228. IEEE, 2004.

11. M. Dias, A. Bacchelli, G. Gousios, D. Cassou, and S. Ducasse. Untangling fine-
grained code changes. In Software Analysis, Evolution and Reengineering, 2015
IEEE 22nd International Conference on, pages 341–350. IEEE, 2015.



12. A. Dunsmore, M. Roper, and M. Wood. The role of comprehension in software
inspection. Journal of Systems and Software, 52(2):121–129, 2000.

13. A. Dunsmore, M. Roper, and M. Wood. Systematic object-oriented inspection – an
empirical study. In Proceedings of the 23rd International Conference on Software
Engineering, pages 135–144. IEEE Computer Society, 2001.

14. X. Ge. Improving Tool Support for Software Developers through Refactoring De-
tection. PhD thesis, North Carolina State University, 2014.

15. T. Gilb and D. Graham. Software Inspection. Addison-Wesley, 1993.
16. V. U. Gómez, S. Ducasse, and T. D’Hondt. Visually characterizing source code

changes. Science of Computer Programming, 98:376–393, 2015.
17. H. Hedberg. Introducing the next generation of software inspection tools. In

Product Focused Software Process Improvement, pages 234–247. Springer, 2004.
18. D. Kawrykow and M. P. Robillard. Non-essential changes in version histories. In

Proceedings of the 33rd International Conference on Software Engineering, pages
351–360. ACM, 2011.

19. O. Laitenberger, M. Leszak, D. Stoll, and K. El Emam. Quantitative modeling of
software reviews in an industrial setting. In Software Metrics Symposium, 1999.
Proceedings. Sixth International, pages 312–322. IEEE, 1999.

20. A. McNair, D. M. German, and J. Weber-Jahnke. Visualizing software architecture
evolution using change-sets. In Reverse Engineering, 2007. WCRE 2007. 14th
Working Conference on, pages 130–139. IEEE, 2007.

21. A. Porter, H. Siy, A. Mockus, and L. Votta. Understanding the sources of vari-
ation in software inspections. ACM Transactions on Software Engineering and
Methodology (TOSEM), 7(1):41–79, 1998.

22. T. Raz and A. T. Yaung. Factors affecting design inspection effectiveness in soft-
ware development. Information and Software Technology, 39(4):297–305, 1997.

23. P. C. Rigby. Understanding open source software peer review: Review processes,
parameters and statistical models, and underlying behaviours and mechanisms. PhD
thesis, University of Victoria, 2011.

24. P. C. Rigby and C. Bird. Convergent contemporary software peer review prac-
tices. In Proceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering, pages 202–212. ACM, 2013.

25. M. Roper, M. Wood, and J. Miller. An empirical evaluation of defect detection
techniques. Information and Software Technology, 39(11):763–775, 1997.

26. Y. Tao, Y. Dang, T. Xie, D. Zhang, and S. Kim. How do software engineers
understand code changes?: an exploratory study in industry. In Proceedings of the
ACM SIGSOFT 20th International Symposium on the Foundations of Software
Engineering. ACM, 2012.

27. Y. Tao and S. Kim. Partitioning composite code changes to facilitate code re-
view. In Mining Software Repositories (MSR), 2015 IEEE/ACM 12th Working
Conference on, pages 180–190. IEEE, 2015.

28. S. Thangthumachit, S. Hayashi, and M. Saeki. Understanding source code dif-
ferences by separating refactoring effects. In Software Engineering Conference
(APSEC), 2011 18th Asia Pacific, pages 339–347. IEEE, 2011.

29. P. Thongtanunam, C. Tantithamthavorn, R. G. Kula, N. Yoshida, H. Iida, and
K.-i. Matsumoto. Who should review my code? a file location-based code-reviewer
recommendation approach for modern code review. In Software Analysis, Evolution
and Reengineering (SANER), 2015 IEEE 22nd International Conference on, 2015.

30. T. Zhang, M. Song, J. Pinedo, and M. Kim. Interactive code review for systematic
changes. In Proceedings of 37th IEEE/ACM International Conference on Software
Engineering. IEEE, 2015.


